Review: Inverses, Exponentials, and Logarithms - 9/23/16

1 One-to-one Functions

Definition 1.0.1 A function f is called **one-to-one** if $f(x_1) \neq f(x_2)$ whenever $x_1 \neq x_2$.

Definition 1.0.2 *Horizontal Line Test*: A function is one-to-one if and only if no horizontal line intersects its graph more than once.

Example 1.0.3 $f(x) = x^3$ is one-to-one (try the horizontal line test on the graph), but $g(x) = x^2$ is not.

2 Inverse Functions

Definition 2.0.4 Let f be a one-to-one function with domain A and range B. Then its **inverse** function f^{-1} has domain B and range A and is defined by $f^{-1}(y) = x \iff f(x) = y$ for any y in B.

When finding an inverse function algebraically:

- 1. Write f(x) = y.
- 2. Solve for x in terms of y.
- 3. Swap the x and y.
- 4. Now $f^{-1}(x) = y$.

Example 2.0.5 $f(x) = \sqrt{x}$. Find $f^{-1}(x)$. First write as $y = \sqrt{x}$, then solve for x, so $x = y^2$. Now swap the variables to get $y = x^2$. Then $f^{-1}(x) = x^2$. What is the domain of this? The domain of the inverse function is the range of f(x), so what was the range of $f(x) = \sqrt{x}$? $[0, \infty)$. So the graph will only include the parts greater than or equal to 0.

The graph of the inverse of a function is reflected over the line y = x.

Practice Problems

- 1. Find the inverse of f(x) = x 2.
- 2. Find the inverse of $g(x) = \frac{1}{x-5}$.
- 3. Find the inverse of $h(x) = \frac{1}{x^3+7}$.
- 4. Sketch the inverse of the following function:

3 Exponential Functions

Definition 3.0.6 An exponential function is a function of the form $f(x) = b^x$ where b is a positive constant.

The graph of an exponential function depends on the value of b.

• b > 1

 $\bullet \ 0 < b < 1$

• *b* = 1

The domain of exponential functions is $(-\infty, \infty)$, and the range is $(0, \infty)$. All exponential functions pass through the point (0, 1).

4 Logarithms

Definition 4.0.7 A logarithmic function with base b is the inverse of the exponential function $f(x) = b^x$. That is, $\log_b(y) = x \iff b^x = y$.

Example 4.0.8 What is $\log_2(8)$? This wants to know: if we have $2^x = 8$, what is x? So $\log_2(8) = 3$.

Since log is the inverse of exponential functions, they undo each other, so $\log_b(b^x) = x$ and $b^{\log_b(x)} = x$.

Here are examples of graphs of logarithmic functions:

The domain of logarithmic functions is $(0, \infty)$ and range is $(-\infty, \infty)$. The **natural logarithm** is the logarithm base *e*. It is written ln. These are logarithm rules:

Exponent	Logarithm
$b^x \cdot b^y = b^{x+y}$	$\log_b(xy) = \log_b(x) + \log_b(y)$
$\frac{b^x}{b^y} = b^{x-y}$	$\log_b(\frac{x}{y}) = \log_b(x) - \log_b(y)$
$b^{0} = 1$	$\log_b(1) = 0$
$(b^x)^y = b^{xy}$	$\log_b(x^y) = y \log_b(x)$
	$\log_b(x) = \frac{\log_a(x)}{\log_a(b)}$

Example 4.0.9 We can write $\log_2(8) = \log_2(2) + \log_2(4)$. This means that the exponent that we raise 2 to get 8 is the same as the exponent we raise 2 to get 2 plus the exponent we raise 2 to get 4, i.e. 3 = 1 + 2.

Example 4.0.10 $\log_3(x) + \log_9(x) = 6$. Solve for x. Raise everything to a base of 9. Then we have $9^{\log_3(x) + \log_9(x)} = 9^6$. Then we have $(3^2)^{\log_3(x)} \cdot 9^{\log_9(x)} = 9^6$, so $3^{2\log_3(x)} \cdot x = 9^6$, so $3^{\log_3(x^2)} \cdot x = 9^6$, so $x^2 \cdot x = 9^6$. Now we take the cube root of both sides to get $x = 9^{6/3} = 9^2 = 81$.

Another way to think about this: Let $\log_3(x) = a$ and $\log_9(x) = b$. Then our equation is a+b = 6. Now $3^a = x$ and $9^b = x$, so $3^a = 9^b$. Recall that $3^2 = 9$, so we can rewrite $9^b = (3^2)^b = 3^{2b}$, so $3^a = 3^{2b}$. Thus a = 2b. Substituting this back into our equations, we get that 2b + b = 6, so b = 2. Then a = 2b = 4. But remember, we are trying to solve for x. We know that $9^b = x$, $9^2 = x = 81$. Thus x = 81. Note that we did not have to solve for a in order to finish this problem.

Practice Problems

- 1. Expand $\log_3(8x)$ into two pieces. Expand it into three pieces. Try expanding it using division instead.
- 2. Expand $\log_3(8x^3)$ using exponents.
- 3. Simplify $\log_2(3) + \log_2(7) 4 \log_2(2)$.
- 4. What is $\log_5(25)$?
- 5. Solve for $x: \log_4(x) = 3$.
- 6. Solve for $x: \log_7(x) = 2$.
- 7. Solve for $x: \log_3(x) = \log_9(x)$.
- 8. Solve for all possible values of x: $2\log_3(x) = \log_9(x)$.